等价无穷小代换X趋近于0时 ln(1+x)~x 和 (e^x)-1~x 怎么证明.

等价无穷小代换X趋近于0时 ln(1+x)~x 和 (e^x)-1~x 怎么证明.

题目
等价无穷小代换X趋近于0时 ln(1+x)~x 和 (e^x)-1~x 怎么证明.
答案
lim{x->0}ln(1+x)/x=lim{x->0}1/x × ln(1+x)=lim{x->0}ln(1+x)^{1/x}=ln[lim{x->0}(1+x)^{1/x}]=lne=1
令e^x-1=t, 则x=ln(1+t), 则
lim{x->0}[e^x-1]/x=lim{t->0}t/ln(1+t)=1
最后一个等式用了ln(1+x)~x (x->0)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.