设向量a.b满足a垂直b且│a-b┃=1,若对任意向量m,(a-m)(b-m)=0,则│m│的最大值与最小值的差是?

设向量a.b满足a垂直b且│a-b┃=1,若对任意向量m,(a-m)(b-m)=0,则│m│的最大值与最小值的差是?

题目
设向量a.b满足a垂直b且│a-b┃=1,若对任意向量m,(a-m)(b-m)=0,则│m│的最大值与最小值的差是?
答案
(a-m)(b-m)=0展开得 ab-am-bm+m^2=0 因为 a垂直b所以-m(a+b)+m^2=0因为a-b┃=1所以
a^2-2ab+b^2=1 得a^2+b^2=1ba变形 得a^2+2ab+b^2=1 ( a+b)^2=1 代入-m(a+b)+m^2=0
得,m=0,m=1 差为1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.