(2003•武汉)已知:抛物线y=ax2+bx+c(a<0)经过点(-1,0),且满足4a+2b+c>0,以下结论:①a+b>0;②a+c>0;③-a+b+c>0;④b2-2ac>5a2,其中正确的个
题目
(2003•武汉)已知:抛物线y=ax2+bx+c(a<0)经过点(-1,0),且满足4a+2b+c>0,以下结论:①a+b>0;②a+c>0;③-a+b+c>0;④b2-2ac>5a2,其中正确的个数有( )
A. 1个
B. 2个
C. 3个
D. 4个
答案
(1)因为抛物线y=ax
2+bx+c(a<0)经过点(-1,0),
所以原式可化为a-b+c=0----①,
又因为4a+2b+c>0----②,
所以②-①得:3a+3b>0,
即a+b>0;
(2)②+①×2得,6a+3c>0,
即2a+c>0,
∴a+c>-a,
∵a<0,
∴-a>0,
故a+c>0;
(3)因为4a+2b+c>0,可以看作y=ax
2+bx+c(a<0)当x=2时的值大于0,草图为:
可见c>0,
∵a-b+c=0,
∴-a+b-c=0,
两边同时加2c得-a+b-c+2c=2c,
整理得-a+b+c=2c>0,
即-a+b+c>0;
(4)∵过(-1,0),代入得a-b+c=0,
∴b
2-2ac-5a
2=(a+c)
2-2ac-5a
2=c
2-4a
2=(c+2a)(c-2a)
又∵4a+2b+c>0
4a+2(a+c)+c>0
即2a+c>0①
∵a<0,
∴c>0
则c-2a>0②
由①②知(c+2a)(c-2a)>0,
所以b
2-2ac-5a
2>0,
即b
2-2ac>5a
2
综上可知正确的个数有4个.
故选D.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 平行四边形中一边长为10CM那么它的两条对角线的长度可以是(选项)
- 虽有佳肴教学相长给我们怎样的启示
- 高数:在利用斯托克斯公式时,如果椭球面和平面相交,那么对曲面积分是对截得的平面部分积分,还是截得...
- 两名运动员在湖边环形跑道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两个同时同地同向出发,经过45分钟甲追上乙.如果两人同时同地反向出发,经过_分钟两人相遇.
- 在梯形ABCD中,AD‖BC,AD=2,BC=8,AC=6,BD=8,求梯形的面积
- 捕获动物用的绳套结法?
- 《手指》五根手指的姿态各是怎样的?手指() 拇指() 食指() 中指 无名指和小指()
- 如图,在△ABC中,AB=AC,AB=AD,且AD平行BC,求证:∠C=2∠D 证明:
- 如图所示,水平地面上的物体A,在斜向上的拉力F作用下,向右作匀速直线运动,则( ) A.物体A可能不受地面支持力的作用 B.物体A可能受到三个力的作用 C.物体A受到滑动摩擦力的大小
- 10的平方等于?