m阶方阵A正定,B为m×n实矩阵,证明,BTAB正定的充要条件是r(b)=n
题目
m阶方阵A正定,B为m×n实矩阵,证明,BTAB正定的充要条件是r(b)=n
答案
B^TAB正定等价于对于任意n×1的非零矩阵x有x^TB^TABx>0,即(Bx)^TA(Bx)>0.
注意A正定,因此当Bx≠0时(Bx)^TA(Bx)>0,但Bx=0时(Bx)^TA(Bx)=0,即(Bx)^TA(Bx)>0等价于Bx≠0,即Bx=0没有非零解.这等价于r(B)=n.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点