(1)求证:关于x的方程(n-1)x2十mx+1=0①有两个相等的实数根. 关于y的方程m2y2-2my-m2-2n2+3=0②必有两个不相等的实数根; (2)若方程①的一根的相反数恰好是方程②的一个
题目
(1)求证:关于x的方程(n-1)x2十mx+1=0①有两个相等的实数根.
关于y的方程m2y2-2my-m2-2n2+3=0②必有两个不相等的实数根;
(2)若方程①的一根的相反数恰好是方程②的一个根,求代数式m2n十12n的值.
答案
(1)证明:由方程①得n-1≠0,m
2-4×(n-1)=0.
∴m
2=4(n-1)且m≠0,则n-1>0.
方程②中△=4m
2-4m
2(-m
2-2n
2+3)=4m
2(1+m
2+2n
2-3)=8m
2(n+3)(n-1).
∵n-1>0.
∴△>0.方程②必有两个不相等的实数根.
(2)由m
2=4(n-1),得n-1=
.代入第一个方程,得
x
2+mx+1=0,解得x=-
.
把
代入第二个方程,得
m
2×(
)
2-2m×
-m
2-2n
2+3=0.
整理得2n
2+4n=7.
∴m
2n十12n=n(m
2+12)
=n(4n-4+12)
=4n
2+8n
=2(2n
2+4n)
=14.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点