不论x、y为何实数,代数式x2+y2+2x-4y+7的值总不小于_.
题目
不论x、y为何实数,代数式x2+y2+2x-4y+7的值总不小于______.
答案
∵x2+y2+2x-4y+7
=(x+1)2+(y-2)2+2≥2,
故不论x、y为何实数,代数式x2+y2+2x-4y+7≥2恒成立.
故答案为:2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点