设函数f(x)的定义域关于原点对称,且满足 (1) f(x1-x2)=[f(x1)*f(x2)+1]/[f(x2)-f(x1)];(2)存在正常数a,

设函数f(x)的定义域关于原点对称,且满足 (1) f(x1-x2)=[f(x1)*f(x2)+1]/[f(x2)-f(x1)];(2)存在正常数a,

题目
设函数f(x)的定义域关于原点对称,且满足 (1) f(x1-x2)=[f(x1)*f(x2)+1]/[f(x2)-f(x1)];(2)存在正常数a,
使 f(a)=1.求证:(1)f(x)是奇函数;(2)f(x)是周期函数,并且有一个周期为4a.
答案
(1)
f(x1-x2)=[f(x1)f(x2)+1]/[f(x2)-f(x1)]
设x=x1-x2
f(-x)=f(x2-x1)=[f(x2)f(x1)+1]/[f(x1)-f(x2)]
=-[f(x1)f(x2)+1]/[f(x2)-f(x1)]=-f(x1-x2)=-f(x)
∴f(x)是奇函数
(2)
f(a)=1,f(-a)=-1
f(x-a)=[f(x)+1]/[1-f(x)]
f(x+a)=[-f(x)+1]/[-1-f(x)]=[f(x)-1]/[1+f(x)]=-1/f(x-a)
f(x+2a)=f(x+a+a)=-1/f(x+a-a)=-1/f(x)
f(x-a)=-1/f(x+a)
f(x-2a)=f(x-a-a)=-1/f(x-a+a)=-1/f(x)
∴f(x+2a)=f(x-2a)
∴f(x)是周期函数,4a是一个周期
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.