设函数f(x)=lnx+a/(x-1)在(0,1/e)内有极值

设函数f(x)=lnx+a/(x-1)在(0,1/e)内有极值

题目
设函数f(x)=lnx+a/(x-1)在(0,1/e)内有极值
求实数a的取值范围
答案
f(x)=lnx+a/(x-1),
f '(x)=1/x-a/(x-1)^2=[(x-1)^2-ax]/[x(x-1)^2],
令 g(x)=(x-1)^2-ax=x^2-(a+2)x+1,
因为 f(x) 在(0,1/e)内有极值,所以 g(x)=0 在(0,1/e)内有根.
由于 g(0)=1>0,
所以
(1)g(1/e)=1/e^2-(a+2)/e+1=0,且 Δ=(a+2)^2-4>=0,且 0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.