如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l

如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l

题目
如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
作业帮
(1)①当α= ___ 度时,四边形EDBC是等腰梯形,此时AD的长为 ___ ;
②当α= ___ 度时,四边形EDBC是直角梯形,此时AD的长为 ___ ;
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.
答案
(1)①当四边形EDBC是等腰梯形时,
∵∠EDB=∠B=60°,而∠A=30°,
∴α=∠EDB-∠A=30°,
∴△ADO是等腰三角形,
∴AD=OD,
过点O作OF∥BC,
∵BC⊥AC,
∴OF⊥AC,
∴OF是△ABC的中位线,
∴OF=
1
2
BC=1,
∵α=∠EDB-∠A=30°,
∴∠ODF=60°=∠DOF=60°,
∴△ODF是等边三角形,
∴OD=OF=DF=1,
∵∠A=∠α=30°,
∴AD=OD=1;
②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°,
根据三角形的内角和定理,得α=90°-∠A=60°,此时,AD=
1
2
AC×
3
2
=1.5.
(2)当∠α=90°时,四边形EDBC是菱形.
∵∠α=∠ACB=90°,作业帮
∴BC∥ED,
∵CE∥AB,
∴四边形EDBC是平行四边形.
在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,
∴∠A=30°,
∴AB=4,AC=2
3

∴AO=
1
2
AC
=
3

在Rt△AOD中,∠A=30°,OD=
1
2
AD,
AD=
AO2+OD2
=
(
3
)
2
+(
1
2
AD)
2

∴AD=2,
∴BD=2,
∴BD=BC.
又∵四边形EDBC是平行四边形,
∴四边形EDBC是菱形.
(1)根据旋转的性质和等腰梯形的性质,①假设四边形EDBC是等腰梯形,根据题目已知条件及外角和定理可求α,AD;②假设四边形EDBC是直角梯形,根据题目已知条件及内角和定理可求α,AD.
(2)根据∠α=∠ACB=90°先证明四边形EDBC是平行四边形.再利用Rt△ABC中,∠ACB=90°,∠B=60°,BC=2求得AB,AC,AO的长度;在Rt△AOD中,∠A=30°,AD=2,可求BD,比较得BD=BC,可证明四边形EDBC是菱形.

旋转的性质;菱形的判定;梯形;等腰梯形的判定.

解决此问题,既要弄清等腰梯形、直角梯形及菱形的判定,又要掌握有关旋转的知识,在直角三角形中,30度角所对的直角边等于斜边的一半,也是解决问题的关键.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.