已知x>0 y>=0 且x+2y=1 求log以(1/2)为底 (8xy+4y^2+1)的最小值
题目
已知x>0 y>=0 且x+2y=1 求log以(1/2)为底 (8xy+4y^2+1)的最小值
答案
由x+2y=1,得:
2y=1-x,
所以8xy+4y^2+1
=(2y)^2+4x*2y+1
=(1-x)^2+4x(1-x)+1
=-3x^2+2x+2
=-3(x-1/3)^2+7/3,
当x=1/3时,有最大值:7/3,
而y=log(1/2)x在定义域上是减函数,
所以当x=1/3,y=1/3时,
log以(1/2)为底 (8xy+4y^2+1)有最小值:log(1/2)7/3=log(2)3-log(2)7.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点