P为矩形ABCD所在平面外的一点,PA⊥平面ABCD,E,F分别是AB,PD的中点,又二面角P-CD-B为45°

P为矩形ABCD所在平面外的一点,PA⊥平面ABCD,E,F分别是AB,PD的中点,又二面角P-CD-B为45°

题目
P为矩形ABCD所在平面外的一点,PA⊥平面ABCD,E,F分别是AB,PD的中点,又二面角P-CD-B为45°
求证:平面PEC⊥平面PCD
答案
取PC中点M,连结ME、MF
∵M、F是PC、PD中点,∴MF平行且等于1/2CD
又∵矩形ABCD中,E是AB中点,∴AE平行且等于1/2CD
∴AE平行且等于MF,∴AEMF是平行四边形,AF∥ME
∵PA⊥平面ABCD,∴PA⊥CD;又∵AD⊥CD,∴CD⊥平面PAD,∴CD⊥PD,∴∠PDA即为二面角P-CD-B的平面角,∠PDA=45°
又由PA⊥ABCD知PA⊥AD,因此△PAD是等腰直角三角形,∴AF⊥PD;又已证AF∥ME,∴ME⊥PD
∵CD⊥平面PAD,AB∥CD,∴AB⊥平面PAD,∴AE⊥AF;又∵AF∥ME,AE∥MF,∴ME⊥MF
∵PD、MF⊂平面PCD,ME⊂平面PEC,∴平面PEC⊥平面PCD
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.