请证明爱尔可斯定理:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形.
题目
请证明爱尔可斯定理:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形.
答案
证明:连接AE、CE、CD,M是AE的中点,N是CE的中点,H是CD的中点,连接QM、QN、PM、CN、PH、GH,
∵△PQG由线段AD、BE、CF的中点构成的三角形,M是AE的中点,N是CE的中点,H是CD的中点,
∴QM=
AB,QN=
BC,PH=
AC,NG=
EF,PM=
DE,HG=
DF,∠NQE=∠CBE,∠AMP=∠AED,∠ABE=∠MQE,
∵AB=BC=AC,EF=DE=DF,
∴QM=QN=PH,PM=NG=HG,
∵∠PMQ=∠AMQ+∠AMP=∠MQE+∠QEM+∠AED=∠MQN+∠NQE+∠QED=∠ABE+∠QED=∠ABC+∠CBE+∠QED=60°+∠EBC+∠QED,∠QNG=∠QNC+∠CNG=∠NQE+∠QEN+∠NED+∠DEF=∠NQE+∠QED+60°,
∴∠PMQ=∠GNQ,
在△PQM和△GQN中,
,
∴△PQM≌△GQN(SAS),
∴PQ=QG,
同理可证:PG=PQ=QG,
∴△PQG是正三角形.
连接AE、CE、CD,M是AE的中点,N是CE的中点,H是CD的中点,连接QM、QN、PM、CN、PH、GH,根据三角形的中位线定理得出QM=
AB,QN=
BC,PH=
AC,NG=
EF,PM=
DE,HG=
DF,∠NQE=∠CBE,∠AMP=∠AED,∠ABE=∠MQE,进而证得QM=QN=PH,PM=NG=HG,∠PMQ=∠GNQ=∠PHG,根据SAS证明三角形全等,证得PG=PQ=QG即可证得.
全等三角形的判定与性质;等边三角形的判定与性质;三角形中位线定理.
本题考查了等边三角形的性质,全等三角形的判定和性质,三角形的中位线的性质等,本题的难点是利用三角形的外角的定理证得∠PMQ=∠GNQ=∠PHG.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 一个数的三分之一是他的四分之一多60,这个数的百分之八十是多少
- (2005•嘉兴)某市为处理污水,需要铺设一条长为4000m的管道.为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设10m,结果提前20天完成任务.设原计划每天铺设管道xm,
- 翻译:what kind of style do you like?
- 与单项式a的n+1次方b的2次方的积,是3a的2n+3次方b的2n+2次方的单项式是?
- 哪3个奇数相加等于36?
- 英语翻译
- 手工焊现场焊接二级焊缝,其他三级焊缝,需要做探伤检测吗?怎样检测,需要多少费用.
- Ninety doctors are in the hospital对Ninety提问
- 3,12,77,5,15,67,69,93,哪个是奇数,偶数,质数,合数
- 植物细胞和动物细胞分别放在较低浓度的蔗糖溶液中.等到细胞的体积不在增大时,细胞液浓度与外界浓度的关系?
热门考点