求下列微分方程的通解dy/dx+2xy-4x=0
题目
求下列微分方程的通解dy/dx+2xy-4x=0
答案
∵dy/dx+2xy-4x=0
==>dy+2xydx-4xdx=0
==>e^(x^2)dy+2xye^(x^2)dx-4xe^(x^2)dx=0 (等式两端同乘e^(x^2))
==>e^(x^2)dy+yd(e^(x^2))-2d(e^(x^2))=0
==>d(ye^(x^2))-2d(e^(x^2))=0
==>ye^(x^2)-2e^(x^2)=C (C是常数)
==>y=Ce^(-x^2)+2
∴原方程的通解是y=Ce^(-x^2)+2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点