对每一个实数x,函数f(x)取sinx和cosx中的较大者,则函数f(x)的值域

对每一个实数x,函数f(x)取sinx和cosx中的较大者,则函数f(x)的值域

题目
对每一个实数x,函数f(x)取sinx和cosx中的较大者,则函数f(x)的值域
答案
因为-1≤sinx≤1 -1≤cosx≤1
所以f(x)最大=1
当它们都为负数时,它们不能同时为-1
不相等时,总有一个要>-√2/2
相等时,sinx=cosx=-√2/2
所以f(x)最小=-√2/2
故值域为[-√2/2,1]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.