设4阶方阵A满足/A+3E/=0,AA^T=2E,矩阵/A/
题目
设4阶方阵A满足/A+3E/=0,AA^T=2E,矩阵/A/
答案
首先由|A+3E|=0知-3是A的一个特征值(a是A的特征值当且仅当|A-aE|=0),所以A^(-1)有特征值1/(-3)=-1/3;
由AA^T=2E知|AA^T|=2,所以|A||A^T|=|A||A|=2,再由|A|
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点