若自然数n可以代表成3个连续自然数的和,也可以表示成11个连续自然数的和,还可以表示为12个连续自然数的和,则n的最小值是多少?

若自然数n可以代表成3个连续自然数的和,也可以表示成11个连续自然数的和,还可以表示为12个连续自然数的和,则n的最小值是多少?

题目
若自然数n可以代表成3个连续自然数的和,也可以表示成11个连续自然数的和,还可以表示为12个连续自然数的和,则n的最小值是多少?
答案
假设这个数是n个自然数之和,设这些连续数中最小的数为m,则这个数可理解为等差为1的等差数列的和,有:N=S=(m+m+n-1)n/2=nm+(n-1)n/2>=(n+1)n/2,如n为奇数,n必为该数的约数;若n为偶数,则n/2必为该数的约数;
所以N必为3、11、6的公倍数,其最小公倍数为66,即N必为66的倍数,同时N≥(12+1)*12/2=78,故N=66k,(k∈自然数,且k≥2) 故这个最小数为132
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.