设x1、x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点. (1)若x1=-1,x2=2,求函数f(x)的解析式; (2)若|x1|+|x2|=22,求b的最大值..

设x1、x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点. (1)若x1=-1,x2=2,求函数f(x)的解析式; (2)若|x1|+|x2|=22,求b的最大值..

题目
设x1、x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点.
(1)若x1=-1,x2=2,求函数f(x)的解析式;
(2)若|x1|+|x2|=2
2
,求b的最大值..
答案
(1)∵f(x)=ax3+bx2-a2x(a>0),
∴f'(x)=3ax2+2bx-a2(a>0)
依题意有
f′(-1)=0
f′(2)=0

3a-2b-a2=0
12a+4b-a2=0
(a>0)

解得
a=6
b=-9

∴f(x)=6x3-9x2-36x..
(2)∵f'(x)=3ax2+2bx-a2(a>0),
依题意,x1,x2是方程f'(x)=0的两个根,
|x1|+|x2|=2
2

∴(x1+x22-2x1x2+2|x1x2|=8.
(-
2b
3a
)2-2•(-
a
3
)+2|-
a
3
|=8

∴b2=3a2(6-a)
∵b2≥0,
∴0<a≤6设p(a)=3a2(6-a),
则p′(a)=-9a2+36a.
由p'(a)>0得0<a<4,
由p'(a)<0得a>4.
即:函数p(a)在区间(0,4]上是增函数,
在区间[4,6]上是减函数,
∴当a=4时,p(a)有极大值为96,
∴p(a)在(0,6]上的最大值是96,
∴b的最大值为4
6
(1)由f(x)=ax3+bx2-a2x(a>0),知f'(x)=3ax2+2bx-a2(a>0)依题意有
f′(−1)=0
f′(2)=0
,由此能求出f(x).
(2)由f'(x)=3ax2+2bx-a2(a>0),知x1,x2是方程f'(x)=0的两个根,且|x1|+|x2|=2
2
,故(x1+x22-2x1x2+2|x1x2|=8.由此能求出b的最大值.

利用导数求闭区间上函数的最值;利用导数研究函数的单调性;函数在某点取得极值的条件.

本题考查函数解析式的求法和实数b的最大值的求法,对数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错.解题时要认真审题,仔细解答,注意导数性质的灵活运用.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.