从点P(m,3)向圆C:(x+2)2+(y+2)2=1引切线,则切线长的最小值是( ) A.26 B.5 C.26 D.4+2
题目
从点P(m,3)向圆C:(x+2)
2+(y+2)
2=1引切线,则切线长的最小值是( )
A. 2
B. 5
C.
D. 4+
答案
如图,当PA⊥x轴时,过P点作的切线长最短,
根据PQ为圆的切线,Q为切点得到AQ⊥PQ,
由圆的方程得到圆心(-2,-2),半径为1
在直角三角形APQ中,AQ=1,PA=3-(-2)=5,
根据勾股定理得PQ=
=2
.
故选A
过A作x轴的垂线,与y=3交于点P,此时过点P作圆的切线PQ,切线长PQ最小,连接AQ,得到AQ垂直于PQ,先利用两点间的距离公式求出AP的长,然后在直角三角形APQ中,利用勾股定理即可求出PQ.
直线与圆的位置关系.
此题考查学生掌握切线垂直于经过切点的直径,灵活运用勾股定理解决实际问题,是一道中档题.本题的突破点是找出切线长的最小值.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点