已知等差数列{an}中,d>0,a3a7=-16,a2+a8=0,设Tn=|a1|+|a2|+…+|an|.求: (I){an}的通项公式an; (II)求Tn.

已知等差数列{an}中,d>0,a3a7=-16,a2+a8=0,设Tn=|a1|+|a2|+…+|an|.求: (I){an}的通项公式an; (II)求Tn.

题目
已知等差数列{an}中,d>0,a3a7=-16,a2+a8=0,设Tn=|a1|+|a2|+…+|an|.求:
(I){an}的通项公式an
(II)求Tn
答案
(1)由等差数列的性质可得a2+a8=a3+a7=0,
∵a3a7=-16,且d>0(2分)
∴a3=-4,a7=4,4d=a7-a3=8
∴d=2
∴an=a3+(n-3)d=-4+2(n-3)=2n-10.…(6分)
(II)当1≤n≤5时,Tn=|a1|+|a2|+…+|an|=-(a1+a2+…an)=-
−8+2n−10
2
•n=9n−n2
.…(9分)
当n≥6时,Tn=|a1|+|a2|+…+|an|=-(a1+a2+…a5)+a6+a7+…+an
=-2(a1+a2+…+a5)+a1+a2+…+an
=
−8+0
2
×5+
−8+2n−10
2
•n=n2−9n+40

综上:Tn=
9n−n2(1≤n≤5)
n2−9n+40(n≥6)
.…(13分)
(1)由等差数列的性质可得a2+a8=a3+a7=0,结合a3a7=-16,且d>0可求a3,a7,进而可求公差d,等差数列的通项
(II)结合(I)的通项,可知需要对n分类讨论:当1≤n≤15时Tn=|a1|+|a2|+…+|an|=-(a1+a2+…an
当n≥6时Tn=|a1|+|a2|+…+|an|=-(a1+a2+…a5)+a6+a7+…+an=-2(a1+a2+…+a5)+a1+a2+…+an,从而可求

数列的求和;等差数列的通项公式.

本题主要考查了等差数列 的性质的应用,等差数列的通项公式an=am+(n-m)d及d=

anam
n−m
、等差数列求和公式的应用,属于综合性试题

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.