2x+y=1,求4x+2y的最小值(这里的X.Y是指数上的)

2x+y=1,求4x+2y的最小值(这里的X.Y是指数上的)

题目
2x+y=1,求4x+2y的最小值(这里的X.Y是指数上的)
RT
答案
4^x+2^y≥2√(4^x*2^y) 这是算术平均大于等于几何平均
=2√(2^2x+2^y)
=2√2^(2x+y)
=2√2
当且仅当4^x=2^y即2x=y=1/2是取等号
所以4^x+2^y的最小值是2√2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.