设三角形ABC的内角A,B,C的对边长分别为a,b,c,且A=60°,c=3b.求a/c的值.求tanB+tanC的值

设三角形ABC的内角A,B,C的对边长分别为a,b,c,且A=60°,c=3b.求a/c的值.求tanB+tanC的值

题目
设三角形ABC的内角A,B,C的对边长分别为a,b,c,且A=60°,c=3b.求a/c的值.求tanB+tanC的值
答案
a²=b²+c²-2bccosA
a²=c²/9+c²-2c²/3*(1/2)
a²=7c²/9
a²/c²=7/9
a/c=√7/3
设b=t,c=3t,a=√7t
cosB=(a²+c²-b²)/2ac
=15/(6√7)
=5√7/14
tanB=√3/5
cosC=(a²+b²-c²)/2ab
=-1/(2√7)
=-√7/14
tanC=-3√3
tanB+tanC=√3/5-3√3=-14√3/5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.