同解的齐次线性方程组的系数矩阵必有相同的秩.
题目
同解的齐次线性方程组的系数矩阵必有相同的秩.
两个同解的齐次线性方程组,则它们必有相同的基础解系.
答案
两个线性方程组Ax=0与Bx=0同解,x是n维列向量
解相同,所以可以有相同的极大无关组,也就是有相同的基础解系,
基础解系所含的向量个数也是一样的
但是Ax=0的基础解系所含向量个数是n-r(A)
但是Bx=0的基础解系所含向量个数是n-r(B)
所以 n-r(A)=n-r(B)
从而 r(A)=r(B)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点