在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连结AD、BE交于点P、作 BQ⊥AD,垂足为Q 求证 BP=PQ

在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连结AD、BE交于点P、作 BQ⊥AD,垂足为Q 求证 BP=PQ

题目
在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连结AD、BE交于点P、作 BQ⊥AD,垂足为Q 求证 BP=PQ
△ABC是正立的大三角形,过B点连结到AC,过A点连接BC 出点头 过B连到出头的那一部分焦点为 Q且成90° ( 各位就这些条件 我们一起动脑子吧)
答案
先用“角边角”证明△ABE≌△CAD,
由于 AB=AC,∠BAC=∠C=60°,AE=CD,
所以 △ABE≌△CAD,
那么∠ABE=∠CAD
再证明∠BPQ=60°.
三角形的2个内角和等于第三个角的补角
所以:∠BPQ=∠ABE+∠BAD=∠CAD+∠BAD=60°
因此,∠PBQ=30°
所以BP=2PQ
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.