已知函数f(x)=x3-3x.过点P(2,-6)作曲线y=f(x)的切线,求此切线的方程.
题目
已知函数f(x)=x3-3x.过点P(2,-6)作曲线y=f(x)的切线,求此切线的方程.
答案
∵f′(x)=3x2-3,
设切点坐标为(t,t3-3t),
则切线方程为y-(t3-3t)=3(t2-1)(x-t),
∵切线过点P(2,-6),∴-6-(t3-3t)=3(t2-1)(2-t),
化简得t3-3t2=0,∴t=0或t=3.
∴切线的方程:3x+y=0或24x-y-54=0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点