求函数y=−cos(x/2−π3)的单调递增区间.

求函数y=−cos(x/2−π3)的单调递增区间.

题目
求函数y=−cos(
x
2
π
3
)
答案
∵y=cos(
x
2
-
π
3
)的单调递减区间即为y=-cos(
x
2
-
π
3
)的单调递增区间,
由2kπ≤
x
2
-
π
3
≤2kπ+π(k∈Z)得:
3
+4kπ≤x≤
3
+4kπ(k∈Z),
∴函数y=-cos(
x
2
-
π
3
)的单调递增区间为[
3
+4kπ,
3
+4kπ](k∈Z).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.