一道概率论的题目,

一道概率论的题目,

题目
一道概率论的题目,
设由自动线加工的某种零件内径x(单位mm)服从正态分布N(u,1),内径小于10或大于12的为次品,销售每件次品要亏损,已知销售利润T(单位元)与销售零件的内径x有如下关系:
T= -1 x
答案
利润 L=-1* φ (10- μ )+20*[ φ (12- μ )- φ (10- μ )]-5*[1- φ (12- μ )]=25 φ (12- μ )-21 φ (10- μ )-5
=25 ∫ 1/(2 π )^0.5e^(-0.5x^2) 从 - ∞到 12- μ的积分
-21 ∫ 1/(2 π )^0.5e^(-0.5x^2) 从∞到 10- μ的积分 -5
对上式求导得
L ’ =1/(2 π )^0.5(21e^[0.5(10- μ )^2]-25 e^[0.5(12- μ )^2]
令 L ’ =0 即可以求得μ =10.9
此时销售一个零件的平均利润最大 .
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.