已知tanX=1/3,求1/(2sinXcosX+cos²X)的值
题目
已知tanX=1/3,求1/(2sinXcosX+cos²X)的值
答案
首先把分母化为1=(sinx)^2+(cosx)^2所以原式就为[(sinx)^2+(cosx)^2]/[2sinxcosx+(cosx)^2],然后分子分母同除以一个(cosx)^2式子就可以化为[(tanx)^2+1]/[2tanx+1]最后带值就是了,注:^2代表平方的意思!
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点