在数列an 中,a1=2,a2=2-lg(根号2),且a(n+2)-2a(n+1)+an=0,求n使sn有最大值,并求此最大值,
题目
在数列an 中,a1=2,a2=2-lg(根号2),且a(n+2)-2a(n+1)+an=0,求n使sn有最大值,并求此最大值,
答案
a(n+2)-2a(n+1)+an=0即为2a(n+1)=an+a(n+2),所以数列{an}是等差数列(等差中项判断法).首项是a1=2,第二项是a2=2-lg(√2),从而公差d=a2-a2=-lg(√2).要求前n项的和的最大值,由于此数列开始时都是正的,那只要求出第一个负项即可.an=a1+(n-1)d=2-(n-1)lg(√2)=lg(100)-lg[(√2)^(n-1)]<0,解得n≥15,即这个数列的第15项是第一个负数项.从而Sn的最大值是S14=28-91lg(√2).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点