已知抛物线y=- x2+bx+4上有不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).

已知抛物线y=- x2+bx+4上有不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).

题目
已知抛物线y=- x2+bx+4上有不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).
已知抛物线y=- x2+bx+4上有不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).
(1)求抛物线的解析式;
(2)如图,抛物线y=- x²+bx+4与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式;
(3)在(2)的条件下,当m,n为何值时,∠PMQ的边过点F?
答案
y=-x2+2x+4
(2)1+根号5-m=(2-n)乘(1+根号5)除以(6-n)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.