任意四边形ABCD,对角线AC与BD交于O点,三角形AOD,BOC面积为4和64,求四边形ABCD面积的最小值

任意四边形ABCD,对角线AC与BD交于O点,三角形AOD,BOC面积为4和64,求四边形ABCD面积的最小值

题目
任意四边形ABCD,对角线AC与BD交于O点,三角形AOD,BOC面积为4和64,求四边形ABCD面积的最小值
答案
设AO=a,BO=b,CO=c,DO=d,∠AOD=BOC=∠1,∠AOB=∠COD=∠2
由已知得:
0.5*a*d*sin∠1=4
0.5*b*c*sin∠1=64
即d*sin∠1=8/a,b*sin∠1=128/c
SΔAOB+SΔCOD=0.5*a*b*sin∠2+0.5*c*d*sin∠2
因为∠1+∠2=180°
所以SΔAOB+SΔCOD
=0.5*a*b*sin∠1+0.5*c*d*sin∠1
=0.5*a*128/c+0.5*c*8/a
=64a/c+4c/a>=2√(64*4)=32
所以四边形ABCD面积的最小值=4+64+32=100
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.