已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=根号2,AF=1,M是线段EF的中点,求证:AM平行平面BDE

已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=根号2,AF=1,M是线段EF的中点,求证:AM平行平面BDE

题目
已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=根号2,AF=1,M是线段EF的中点,求证:AM平行平面BDE
答案
证明:设正方形ABCD的中心点为O,作辅助线OE,
根据正方形的性质,正方形ABCD的两对角线相互垂直
∴△OAB是等腰RT△OAB.
在等腰RT△OAB中,已知AB=√2,则AO=1,
又∵正方形ABCD⊥矩形ACEF ,
M是线段EF的中点,O也为线段AC的中点
∴AO=ME,在平面ACEF中,AM‖OE
∵ OE在平面BDE上,
∴AM‖平面BDE.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.