判断齐次线性方程组的解 x1+x2+2x3+3x4=0 x1+2x2+3x3-x4=0 2x1-x2-x3-2x4=0 2x1+3x2-x3-x4=0

判断齐次线性方程组的解 x1+x2+2x3+3x4=0 x1+2x2+3x3-x4=0 2x1-x2-x3-2x4=0 2x1+3x2-x3-x4=0

题目
判断齐次线性方程组的解 x1+x2+2x3+3x4=0 x1+2x2+3x3-x4=0 2x1-x2-x3-2x4=0 2x1+3x2-x3-x4=0
答案
系数矩阵A=
1 1 2 3
1 2 3 -1
2 -1 -1 -2
2 3 -1 -1
r2-r1,r3-2r1,r4-2r1
1 1 2 3
0 1 1 -4
0 -3 -5 -8
0 1 -5 -7
r3+3r2,r4-r2
1 1 2 3
0 1 1 -4
0 0 -2 -20
0 0 -6 -3
r4-3r3
1 1 2 3
0 1 1 -4
0 0 -2 -20
0 0 0 57
所以方程组只有零解.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.