在三角形ABC中,AB=√6-√2,C=30度,则AC+BC的最大值是

在三角形ABC中,AB=√6-√2,C=30度,则AC+BC的最大值是

题目
在三角形ABC中,AB=√6-√2,C=30度,则AC+BC的最大值是
我知答案是4
a=csinA/sinC b=csinB/sinC
a+b=c/sinC(sinA+sinB)
=2(√6-√2)( sinA+sinB) ①
=2(√6-√2)(1/2 cosA+(√3+2)/2 sinA) ②
=(√6-√2)cosA+(√6+√2)sinA
=4sin(15度+A)
答案
因为C=30°,从而B=150°-A;
所以sinB=sin(150°-A)
=sin150°cosA-cos150°sinA
=1/2cosA+√3/2sinA
这样的话 sinA+sinB=1/2 cosA+(√3+2)/2 sinA)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.