已知函数f(x)=x^2+alnx,求函数f(x)在[1,e]上的最小值及相应的x值
题目
已知函数f(x)=x^2+alnx,求函数f(x)在[1,e]上的最小值及相应的x值
答案
(2x^2+a)/x>0
即f(x)是单调增函数
f(x)在[1,e]上的最小值=f(1)=1,此时x=1
a0
∴x=√(-a/2)
即此时f(x)在x=√(-a/2)有极小值
当√(-a/2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点