韦达定理和判别式的一条题目

韦达定理和判别式的一条题目

题目
韦达定理和判别式的一条题目
设a,b为整数,且方程ax^2+bx+1=1的两个不同的 正 数根都 小于1
求最a的最小值
小弟实在是无从下手 感激不尽
ax^2+bx+1=0
答案
题目有没有写错?
方程是ax^2+bx+1=0吧
首先,设2根为x1,x2,由于x1x2=1/a>0,所以a>0
即为一开口向上的抛物线
为满足题意,需对称轴00 (2)
(1)+(2)得到b^2+2b>0,注意b=3/2,且a是整数,得到a>=2
所以a的最小值是2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.