已知函数f(x)=-x^3+m.其中m为常数1,证明函数f(x)在R上是减函(2)当函数f(x)是奇函数时,求函数m的值
题目
已知函数f(x)=-x^3+m.其中m为常数1,证明函数f(x)在R上是减函(2)当函数f(x)是奇函数时,求函数m的值
答案
f'(x)=-3x²
因为x²≥0.所以-x²≤0
所以在R上f'(x)≤0
即f(x)在R上是减函数
f(x)为奇函数
所以f(-x)=-f(x)
得 x³+m=x³-m
得2m=0
可知m=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点