P是双曲线9分之x²-16分之y²=1的右支上一点,M、N分别是圆(x+5)²+y²=4

P是双曲线9分之x²-16分之y²=1的右支上一点,M、N分别是圆(x+5)²+y²=4

题目
P是双曲线9分之x²-16分之y²=1的右支上一点,M、N分别是圆(x+5)²+y²=4
和(x-5)²+y²=1上的点,则|PM|-|PN|的最大值
答案
圆(x+5)²+y²=4 的圆心F1(-5,0),半径是2
圆(x-5)²+y²=1的圆心是F2(5,0),半径是1
双曲线x²/9-y²/16=1
a²=9,b²=16
∴ c²=25
∴ F1,F2是双曲线的交点
∴ |PM| -|PN|
≤ |PF1|+2-(|PF2|-1)
= |PF1 |-|PF2|+3
=2a+3 (双曲线的定义)
=9
即|PM|-|PN|的最大值是9
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.