若a整除n,b整除n,且存在整数x,y使得ax+by=1,证明ab整除n

若a整除n,b整除n,且存在整数x,y使得ax+by=1,证明ab整除n

题目
若a整除n,b整除n,且存在整数x,y使得ax+by=1,证明ab整除n
答案
假设n=sa=tb,(s,t∈Z),
ax+by=1——》x/b+y/a=1/ab
——》n/ab=n(x/b+y/a)=nx/b+ny/a=tx+sy,
t、x、s、y均为整数,所以tx+sy为整数,
——》ab整除n.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.