一道高一数学三角函数题

一道高一数学三角函数题

题目
一道高一数学三角函数题
在△ABC中,已知三个内角A、B、C满足y=2+cosC·cos(A-B)-cos^2C
(1)若任意交换A、B、C的位置,y的位置是否会发生变化?证明你的结论
(2)求y的最大值
谢谢 要有详细的过程及讲解
答案
(1)不会.y=2+cosC·cos(A-B)-cos^2C=2+cosC[cos(A-B)-cosC]=2+cosC[cos(A-B)+cos(A+B)]=2+2cosC·cosA·cosB
(2)y=2+2cosC·cosA·cosB小于等于2+2(cosC+cosA+cosB)^3/27
当且仅当cosC=cosA=cosB=1/2时等号成立
所以y的最大值为2+2(1/2+1/2+1/2)^3/27=9/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.