从极点O作直线与另一直线L:Pcos(θ-π/4)=4√2相交于点M,在线段OM上取一点P,使|OM||0P|=12,求点

从极点O作直线与另一直线L:Pcos(θ-π/4)=4√2相交于点M,在线段OM上取一点P,使|OM||0P|=12,求点

题目
从极点O作直线与另一直线L:Pcos(θ-π/4)=4√2相交于点M,在线段OM上取一点P,使|OM||0P|=12,求点
答案
是求点P的方程吧.
设点P的极坐标为(ρ,ψ),则过O做所做的直线其实就是θ=ψ,与ρcos(θ-π/4)=4√2联立可以推出|OM|=4√2/cos(ψ-π/4),而|OP|=ρ,所以可得ρ4√2/cos(ψ-π/4)=12,这就是点P所满足的极坐标方程.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.