已知抛物线y^2=4x与椭圆x^2/8+y^2/m=1,有共同焦点

已知抛物线y^2=4x与椭圆x^2/8+y^2/m=1,有共同焦点

题目
已知抛物线y^2=4x与椭圆x^2/8+y^2/m=1,有共同焦点
1,求m的值
2,在抛物线上有一动点P,当动点P与定点A(3,0)的距离|AP|最小时,求P的坐标及PA的最小值
答案
m=8已有解
设动点p(x,y)两点距离公式[(x-3)^2+y^2]^2=|PA|,把抛物线方程带入,就得到根号下的方程(x-3)^2+4x,那么就是求这个方程的最小值在x>=0的情况下.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.