设A为n阶矩阵,证明A的转置与A的特征值相同.
题目
设A为n阶矩阵,证明A的转置与A的特征值相同.
答案
A^T 指A的转置,要求一个矩阵的特征值,先求特征多项式,即|λE-A|=0
A的转置的特征多项式 |λE-A^T|=0 ,
因 (λE-A)^T=(λE)^T-A^T=λE-A^T
所以|λE-A|=|(λE-A)^T|=|λE-A^T|
所以两个矩阵的特征多项式一样,所以其特征值相同
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点