如图,在四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD为长方形,AD=2AB,点E、F分别是线段PD、PC的中点. (Ⅰ)证明:EF∥平面PAB; (Ⅱ)在线段AD上是否存在一点O,使得BO
题目
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD为长方形,AD=2AB,点E、F分别是线段PD、PC的中点.
(Ⅰ)证明:EF∥平面PAB;
(Ⅱ)在线段AD上是否存在一点O,使得BO⊥平面PAC,若存在,请指出点O的位置,并证明BO⊥平面PAC;若不存在,请说明理由.
答案
证明:(Ⅰ)∵四边形ABCD为长方形,
∴CD∥AB,
∵EF∥CD,∴EF∥AB,
又∵EF⊄平面PAB,AB⊂平面PAB,
∴EF∥平面PAB. …(6分)
(Ⅱ) 在线段AD上存在一点O,使得BO⊥平面PAC,
此时点O为线段AD的四等分点,满足
AO=AD,…(8分)
∵长方形ABCD中,
∠BAO=∠ADC=90°,
==
∴△ABO∽△ADC,
∴∠ABO+∠CAB=∠DAC+∠CAB=90°,
∴AC⊥BO,(10分)
又∵PA⊥底面ABCD,BO⊂底面ABCD,
∴PA⊥BO,
∵PA∩AC=A,PA、AC⊂平面PAC
∴BO⊥平面PAC.(12分)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点