求函数y=x²-3x+3/x-2﹙x>2﹚的最小值﹙用均值定理﹚

求函数y=x²-3x+3/x-2﹙x>2﹚的最小值﹙用均值定理﹚

题目
求函数y=x²-3x+3/x-2﹙x>2﹚的最小值﹙用均值定理﹚
答案
下面有括号?
解y=(x²-3x+3)/(x-2)
=[x(x-2)-x+3]/(x-2)
=[x(x-2)-(x-2)+1]/(x-2)
=x(x-2)/(x-2)-(x-2)/(x-2)+1/(x-2)
=(x-1)+1/(x-2)
=(x-2)+1/(x-2)+1
因为x>2,x-2>0
所以(x-2)+1/(x-2)≥2,
即 y=(x-2)+1/(x-2)+1有最小值 2+1=3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.