一整数a若不能被2和3整除,则a的平方+23必能被24整除

一整数a若不能被2和3整除,则a的平方+23必能被24整除

题目
一整数a若不能被2和3整除,则a的平方+23必能被24整除
答案
证明 ∵a^2+23=(a^2-1) +24,只需证 a^2-1可以被 24整除即可 .
∵a不能被2整除 .∴a为奇数 .设 a=2k+1(k为整数 ),
则 a2-1=(2k+1)2-1=4k2+4k=4k(k+1).
∵k 、 k+1为二个连续整数,故 k(k+1)必能被 2整除,
∴8|4k (k+1),即 8|(a^2-1) .
又 ∵(a-1),a,(a+1)为三个连续整数,其积必被 3整除,即 3|a(a-1)(a+1) =a(a^2-1),
∵a不能被3整除 ,∴3|(a^2-1) .3与 8互质 ,∴24|(a^2-1),即 a^2+23能被 24整除 .
祝您学习愉快
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.