在三角形ABC中,sinA:sinB:sinC=2:√6:(√3+1),则此三角形最小内角是
题目
在三角形ABC中,sinA:sinB:sinC=2:√6:(√3+1),则此三角形最小内角是
答案
sinA:sinB:sinC=2:√6:(√3+1),根据正弦定理有
a:b:c=2:√6:(√3+1),根据大角对大边,则∠A最小
根据余弦定理cosA=(b²+c²-a²)/2ab=(6+4+2√3-4)/2*√6*(√3+1)=√2/2
所以∠A=45°
答:在三角形ABC中,sinA:sinB:sinC=2:√6:(√3+1),则此三角形最小内角是45°
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点