若不等式|x+1|-|x-2|>a在x∈R上有解,则a的取值范围是_.

若不等式|x+1|-|x-2|>a在x∈R上有解,则a的取值范围是_.

题目
若不等式|x+1|-|x-2|>a在x∈R上有解,则a的取值范围是______.
答案
由绝对值的意义可得|x+1|-|x-2|表示数轴上的x对应点到-1对应点的距离减去它到2对应点的距离,
故|x+1|-|x-2|的最大值为3,最小值为-3.
再根据不等式|x+1|-|x-2|>a在x∈R上有解,故有3>a,
故a的范围为(-∞,3),
故答案为 (-∞,3).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.