f(x)=x^3+sinx,若f(m)+f(m-1)>0,则m的取值范围

f(x)=x^3+sinx,若f(m)+f(m-1)>0,则m的取值范围

题目
f(x)=x^3+sinx,若f(m)+f(m-1)>0,则m的取值范围
答案
答:
f(x)=x^3+sinx
定义域为实数范围R
f(-x)=-x^3-sinx=-f(x)
所以:
f(x)是奇函数
求导:f'(x)=3x^2+cosx>0
所以:f(x)是增函数
f(m)+f(m-1)>0
f(m)>-f(m-1)=f(1-m)
所以:
m>1-m
m>1/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.