设O为三角形ABC所在平面上一定点,P为平面上的动点,且满足(向量OP-向量OA)*(向量AB-向量AC)=0
题目
设O为三角形ABC所在平面上一定点,P为平面上的动点,且满足(向量OP-向量OA)*(向量AB-向量AC)=0
求P点轨迹过三角形的什么心
答案
(向量OP-向量OA)=向量AP (向量AB-向量AC)=向量CB 因为向量AP×向量BC=0 所以AP垂直于BC 所以P点轨迹过三角形的垂心
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点