设函数f(x)=ax²+bx+c(a,b,c为实数,且a≠0),f(x)={f(x)x>0 -f(x)x0,且f(x)为偶函数,证明f(m)+f(n)>0.

设函数f(x)=ax²+bx+c(a,b,c为实数,且a≠0),f(x)={f(x)x>0 -f(x)x0,且f(x)为偶函数,证明f(m)+f(n)>0.

题目
设函数f(x)=ax²+bx+c(a,b,c为实数,且a≠0),f(x)={f(x)x>0 -f(x)x0,且f(x)为偶函数,证明f(m)+f(n)>0.
答案
(Ⅰ)因为f(x)=ax2+bx+c,所以f'(x)=2ax+b.
又曲线y=f(x)在点(-1,f(-1))处的切线垂直于y轴,故f'(-1)=0,
即-2a+b=0,因此b=2a.①
因为f(-1)=0,所以b=a+c.②
又因为曲线y=f(x)通过点(0,2a+3),
所以c=2a+3.③
解由①,②,③组成的方程组,得a=-3,b=-6,c=-3.
从而f(x)=-3x2-6x-3.
所以F(x)= -3(x+1)2 x>0 3(x+1)2 x<0.(Ⅱ)由(Ⅰ)知f(x)=-3x2-6x-3,
所以g(x)=kx-f(x)=3x2+(k+6)x+3.
由g(x)在[-1,1]上是单调函数知:-k+6 6 ≤-1或-k+6 6 ≥1,
得k≤-12或k≥0
(Ⅲ)因为f(x)是偶函数,可知b=0.
因此.
又因为mn<0,m+n>0,
可知m,n异号.
若m>0,则n<0.
则F(m)+F(n)=f(m)-f(n)=am2+c-an2-c=a(m+n)(m-n)>0.
若m<0,则n>0.
同理可得F(m)+F(n)>0.
综上可知F(m)+F(n)>0.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.